
votre propre thème part 2

menus,
widgets et
autres paramètres
a.k.a. functions.php

PRÉPARÉ PAR:

Bernard Imbert
Jean-François Leblanc

Adapté par Mathieu Dupont
Pour le cours 420-964-EMSemaine 6

🧠
kahoot!

à vous de jouer

01

comment déboguer
wordpress?

l était une fois, un étudiant de la Tim qui avait peur du
grand méchant PHP. Mère-grand était derrière lui et
l’encourageait sans arrêt. Il finit par prendre confiance en lui et tout
alla bien. Et soudain, le thème apparu, les pages prenaient forme
quand tout à coup..

est apparu..

un problème..

vraiment épeurant..

5

💀

une erreur critique!!!

💀

la page blanche
de la mort

(pour les anciennes versions de WordPress)

on fait quoi?
⇾ d’abord, on pleure un petit peu 😢

⇾ ensuite, on se rappelle que WordPress laisse des traces

toutes les erreurs sont stockées
dans un fichier nommé debug.log
à la racine de l’installation.

debug.log?
⇾ c’est chiant à consulter

⇾ ça peut contenir des milliers de lignes qui
sont là depuis longtemps

WordPress peut nous afficher live, dans le
navigateur, les erreurs. Il ne suffit que d’activer
le mode debug en définissant les propriétés
WP_DEBUG ET WP_DEBUG_LOG à true dans
le fichier wp-config.php à la racine de votre
installation.

// define('WP_DEBUG', false);

define('WP_DEBUG', true);

define('WP_DEBUG_LOG', true);

pendant qu’on
développe le site
on ajoute

// define('WP_DEBUG', false);

define('WP_DEBUG', true);

quand le site va en
ligne
on remet

define('WP_DEBUG', false);

// define('WP_DEBUG', true);

ce n’est pas parfait, mais ça aide!

<div id="principal">

<?php if(have_posts()) : ?>

<?php while (have_posts()) : the_post(); ?>

<article <?php post_class(); ?> id="article<?php the_ID(); ?>">

...

</article>

<?php endwhile; ?>

</div>

⇾ on voit les erreurs

⇾ on peut corriger

endif manquant

parfois, on doit chercher un peu

🤯

remarque #1
⇾ une seule erreur est affichée à la fois

⇾ dès que le PHP frappe une erreur, il arrête tout

PHP est un préprocesseur, c’est à dire qu’il va interpréter le
code avant de le rendre, comme Sass que vous avez utilisé. Dès
qu’il frappe une erreur, il arrête son interprétation et donc,
n’affiche plus rien par la suite.

💡

remarque #2
⇾ quand vous avez une page blanche, vérifiez si l’admin est toujours

accessible

⇾ si oui, changez de thème

⇾ si vous avez encore un pépin avec le nouveau thème, désactivez les
extensions une à une

02

les fonctions WordPress
elles sont rendues où, mes

images à la une?

certaines options ne sont
affichées que lorsque les
thèmes les supportent

Pour que les menus et les widgets
soient disponibles, le thème doit
déclarer qu’il les supporte.

C’est possible en utilisant le fichier
functions.php dont nous parlerons
bientôt.

comprendre le fichier functions.php
s’il est présent à la racine du thème, ce fichier PHP sera
automatiquement chargé et exécuté à chaque requête

Il permet :

⇾ de spécifier les fonctionnalités que supportera notre thème
(images à la une, widgets, menus, etc.)

⇾ d’ajouter des filtres et des actions modifiant dynamiquement
le rendu des pages

mise en garde

mise en garde
afin d’éviter beaucoup de douleur potentielle, il est fortement
recommandé de ne pas mettre la balise de fermeture dans le
fichier functions.php

en fait, on ne devrait jamais mettre la balise de fermeture ?> dans
les fichiers qui ne contiennent que du PHP

<?php

// insérez le code PHP ici

// Ne mettez pas la balise de fermeture

🔍syntaxe de base du langage PHP

http://php.net/manual/fr/language.basic-syntax.phptags.php
http://php.net/manual/fr/language.basic-syntax.phptags.php

fonctionnalités supportées
la fonction add_theme_support() permet de spécifier quelles
fonctionnalités sont supportées par votre thème

⇾ pour autoriser l’utilisation des images à la une :

⇾ pour que WordPress crée des copies des images à une
dimension donnée :

add_theme_support('post-thumbnails');

set_post_thumbnail_size(800, 480);

add_image_size('vignette', 220, 180);

add_image_size('xxl', 2200, 1800);

<extension-regenerate-thumbnails>

attention, ce n’est pas du vrai code

Lorsque vous modifiez les grandeurs de vos images. Cette petite
extension est très intéressante pour vous assurer que WordPress
régénère les images au bon format.

regenerate thumbnails
⇾ toutes d’un coup

⇾ une à la fois

comme toute bonne chose a une fin
Une fois terminé, vous pouvez désinstaller l’extension Regenerate
Thumbnails.

À l’avenir, toutes les images que vous téléversez seront dans les
bonnes dimensions que vous aurez spécifiées.

Bonnes pratiques
Toujours effacer les extensions et les images qui ne servent
plus. Vos sauvegardes en seront plus légères et vous aurez plus
d’espace libre sur votre serveur.

💡

</extension-regenerate-thumbnails>

on revient aux choses sérieuses

retour à functions.php
il est aussi possible de spécifier le nombre maximum de mots pour
l’affichage du texte résumé (the_excerpt)

dans functions.php :

function new_excerpt_length($length) {

return 20; // Nombre de mots limite

}

add_filter('excerpt_length', 'new_excerpt_length');

03

ajouter un menu
c’est quoi le plat du jour?

actions
la fonction add_action() permet d’ajouter une opération
personnalisée à une certaine étape du processus de génération de
la page

function ma_fonction() {

// insérez le code PHP ici

}

// la plupart des actions liées au thème

// et extension pourront utiliser l'action init

add_action('init', 'ma_fonction');

🔍codex: référence add_action()

http://codex.wordpress.org/Function_Reference/add_action
http://codex.wordpress.org/Function_Reference/add_action

enregistrer des emplacements pour les menus

⇾ lorsque vous utilisez l’interface WordPress pour ajouter un
menu ou un widget, vous indiquez au logiciel l’endroit où le
menu/widget devrait s’afficher (ex.: sidebar, footer 1,
menu_principal, etc.)

⇾ pour pouvoir permettre cela dans votre thème, vous devez
enregistrer des emplacements prévus à cet effet et ajouter le
code dans votre thème aux endroits désirés afin d’afficher le
contenu de ces nouveaux emplacements

enregistrer des emplacements pour les menus

Par défaut, WordPress n’active pas de menu dans un thème
personnalisé. La première étape consiste donc à activer les options
de menu de WordPress dans functions.php

1. l’indiquer à WordPress
⇾ enregistrer un emplacement de menu

⇾ enregistrer plusieurs emplacements de menus

function creer_menu() {

register_nav_menu('menu_principal', 'Menu principal');

}

add_action('init', 'creer_menu');

🔍codex: référence add_action()

register_nav_menus(array(

'menu_principal' => 'Menu principal',

'menu_footer' => 'Menu du pied de page',

'menu_sociaux' => 'Menu réseaux sociaux',

));

http://codex.wordpress.org/Function_Reference/add_action
http://codex.wordpress.org/Function_Reference/add_action

2. création et
assignation du
menu
il faut ensuite aller créer notre
premier menu dans l’interface
d’administration

n’oubliez pas
d’assigner votre menu

à un emplacement

3. sélection d’un emplacement
Le menu est maintenant disponible, mais rien ne s’affiche dans
notre page.

Ne vous inquiétez pas, c’est normal! Nous devons maintenant lui
dire où nous voulons que le menu s’affiche. Nous appelons ça une
zone d’emplacement.

Pour déterminer une zone dans votre thème, vous devrez mettre
le code suivant à l’endroit désiré dans votre gabarit :

<?php wp_nav_menu(array(

'theme_location' => 'menu_principal')

); ?>

🚀Houston! on a un menu
la structure par défaut du menu affiché sera :

<div class="menu-nom-menu-container">

<ul id="menu-nom-menu" class="menu">

<li id="menu-item-id-item"class="menu-item">

Texte

</div>

🔍codex: référence
wp_nav_menu()

http://codex.wordpress.org/Function_Reference/wp_nav_menu
http://codex.wordpress.org/Function_Reference/wp_nav_menu

voici les différentes classes (css) qui sont
générées par WordPress

⇾ .menu-nom-menu-container: sur le conteneur du menu (<div> ou <nav>)

⇾ .menu: sur le contenant le menu

⇾ .sub-menu: sur le contenant les pages enfants

⇾ .menu-item: sur chaque du menu

⇾ .current-menu-item: sur le de la page courante

⇾ .current-menu-parent: sur le parent de la page courante (lorsque sous-nav)

⇾ .current-menu-ancestor: sur les ancêtres de la page courante (lorsque sous-
sous-nav)

⇾ .menu-item-home: sur les de la page d’accueil

🔍codex: référence
wp_nav_menu()

http://codex.wordpress.org/Function_Reference/wp_nav_menu
http://codex.wordpress.org/Function_Reference/wp_nav_menu

Lors de l’intégration html/css, prenez tout de suite
en considération le nom des classes générées par
WordPress.
Vous sauverez énormément de temps.
De toute façon, c’est une belle nomenclature de
classes de menu, pourquoi ne pas toujours
l’utiliser.

04

ajouter un widget
sinon, à quoi sert ma barre latérale?

enregistrer des emplacements pour les widgets

⇾ lorsque vous utilisez l’interface WordPress pour ajouter un
menu ou un widget, vous indiquez au logiciel l’endroit où le
menu/widget devrait s’afficher (ex.: sidebar, footer 1,
menu_principal, etc.)

⇾ pour pouvoir permettre cela dans votre thème, vous devez
enregistrer des emplacements prévus à cet effet et ajouter le
code dans votre thème aux endroits désirés afin d’afficher le
contenu de ces nouveaux emplacements

⇾ en gros, c’est pareil que pour les menus

enregistrer des emplacements pour les widgets

Par défaut, WordPress n’active pas de widget dans un thème
personnalisé. La première étape consiste donc à activer les options
de widget de WordPress dans functions.php

1. l’indiquer à WordPress
⇾ enregistrer un emplacement de widget

function creer_widgets() {

register_sidebar(array(

'name' => 'Ma nouvelle zone de widget',

'id' => 'zone-widget',

'before_widget' => '<div class="zone-widget">',

'after_widget' => '</div>',

'before_title' => '<h2 class="zone-widget-title">',

'after_title' => '</h2>',

));

}

add_action('widgets_init', 'creer_widgets');

Vous pouvez utiliser plus
d’une fois register_sidebar()
afin d’avoir plusieurs
emplacements de widget

💡

register_sidebar(array(

// nom de l’emplacement qui apparaîtra dans l’interface administrateur

'name' => 'Ma nouvelle zone de widget',

// identifiant unique de l’emplacement widget
'id' => 'zone-widget',

// balise HTML qui ouvrira votre emplacement, ajoutez-y une classe qui vous sera utile pour le styler
'before_widget' => '<div class="zone-widget">',

// fermer la balise
'after_widget' => '</div>',

// balise pour le titre du widget (<h2>, <h3>, <h4>), ajoutez-y une classe qui vous sera utile pour le styler

'before_title' => '<h2 class="zone-widget-title">',

// fermer la balise du titre
'after_title' => '</h2>',

));

}

2. création et
assignation d’un widget
il faut ensuite aller créer notre premier
widget dans l’interface d’administration

3. sélection d’un emplacement
Le menu widget est maintenant disponible, mais rien ne s’affiche
dans notre page.

Ne vous inquiétez pas, c’est normal! Nous devons maintenant lui
indiquer l’endroit où les widgets devraient s’afficher. Nous
appelons ça une zone d’emplacement.

3. sélection d’un emplacement (bis)
Pour déterminer une zone dans votre thème, vous devrez mettre
le code suivant à l’endroit désiré dans votre gabarit :

Petit conseil pour plus facilement ajuster le CSS : ajoutez un div
pour englober la zone de widget.

<?php if (is_active_sidebar('zone-widget')) { ?>

<div class="widget_header">

<?php dynamic_sidebar('zone-widget'); ?>

</div>

<?php } ?>

<?php if (is_active_sidebar('zone-widget')) { ?>

<?php dynamic_sidebar('zone-widget'); ?>

<?php } ?>

la fin

exercice s05 (suite)

créer son thème
personnalisé

➡ instructions sur le site du cours dans semaine06 ⬅

